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Analytic  Solut ions  of  Flowfields Inside a Rolling 
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The flowfields inside a deformed rolling torus are analyzed in the limit where the cross- 

sectional diameter is small in comparison to the torus diameter. The geometric domain consists 

of a torus whose cross-section is circular except in the footprint region where the cross-section 

is flattened. Analytic formulas for the flow velocities and pressures are derived and followed by 

a coordinate transformation. Results for the pressure fields are presented with the Poiseuille flow 

limit. 
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I. Introduction 

Recently, the development of auto industry 

with high performance characteristics has shown 

increasing concern about reducing tire rolling 

power losses to improve vehicle fuel economy, 

because six percent of the total energy utilized by 

an automibile is assumed by rolling resistance of 

the tires. Thus, a need exists for the development 

of methods for predicting the internal fiowfields. 

The present paper seeks to extend the analysis 

of Rae (1983) to nonzero values of the Reynolds 

number and ratio of cross sectional diameter to 
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wheel diameter, and to more realistic models of 

the tire cross-sectional shape. The full equations 

of motion (for steady, three-dimensional viscous 

flow in a deformed torus with a moving wall) are 

presented in Sec. 2, followed by a discussion of 

the geometric parameters that characterize the 

problem. Some of these parameters are similar to 

those appearing in the classical problem of fully 

developed flow in a tightly coiled helix (Dean, 

1927 and 1928), and its extensions to entrance 

effects (Yao and Berger, 1975, Talbot and Wong, 

1982, Stewartson et al., 1980), and unsteady-flow 

effects (Chandran et al., 1979, Mullin and Great- 

ed, 1980, Lin and Tarbell, 1980). There is a 

essential difference in the present problem, how- 

ever, since neither the pressure distribution nor 

the mass flow is known in advance, and these 

variables must be found as part of the solution. In 

addition, the deformation of the tire introduces 

significant geometrical complication and the 

moving-wall boundary condition necessitates 

matching of the flow velocity at the wall to the 

three components of velocity of the surface itself. 

For small values of the radius ratio, the tire 

geometry approaches that of a pipe whose axis is 

straight, but whose cross-section is deformed. In 

this limit, analytic solutions can be found in two 

cases: the first applies at vanishing Reynolds 

number, where the appropriate equations are 

those of Stokes flow, and reduce to Poiseuille 

flow when the deformation is small enough that 

the longitudinal components of the shear stress 

are negligible in comparison to the transverse 

ones. The solution in this limit is presented in 

Sec. 3 for a deformation that changes from a 

circular cross-section to that of an ellipse of equal 

perimeter. 

2. Basic Equations 

The coordinates used to describe the region 

inside the deformed rolling torus are shown in 

Fig. 1. Here A' is the fixed radial location of some 

convenient point in the toroidal cross section, 

such as its centroid in the undeformed state. The 

angle ~b is measured in the rolling direction, while 

O g ' l ~  

Fig. 1 Toroidal coordinates system. 

r and 0 are polar coordinates in the cross sec- 

tion. The cylindrical radius is denoted by a, while 

u,v and w denote the velocity components in the 

r,O and ~b directions respectively. 

For some purpose it is useful to separate the 

solid-body rotation parts of the pressure and the 

~b-component of velocity, as follows: 

p=~(~a)2+F; w=S2a+ w' (l) 

where ~Q denotes the angular velocity of rotating 

torus. 

The Navier-Stokes equations in these variables 

are listed in Appendix. This set of equations 

forms the starting point for the analytic studies of 

the present paper. Three parameters appear from 

a dimensional analysis of the problem: a/R, 
~Ra/~  and Sma• Here a is a measure of the 

mean cross-sectional radius of the undeformed 

torus, ~max is the maximum radial displacement of 

the deformed torus, and L is the half length of the 

deformed region. 

In addition, the entire shape of the deformed 

torus must be considered as a parameter of the 
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problem: it enters through the torus geometry 

contained in the function r=(r Figure 2 shows 

the notation; note that the point  at y = - a  

remaining at a constant distance from the axis of  

rotation. Because the pressures generated by the 

torus motion are small compared to the inflation 

pressure, the torus geometry can be regarded as 

given; there is no interaction between the inner air 

motion and the torus shape. 

The boundary condition to be satisfied is that 

the fluid velocity of the gas adjacent to the surface 

be equal to the velocity of the surface. The 

mechanics of deformation of a torus can be very 

complicated (Koutny, 1976), but in general it is 

found that stretching in the 0-direct ion is small 

comparison to the compression and extensions 

that may take place in the C-direction (Hill and 

Baumgarten, 1984). As a simple model of this 

behavior, the present study assumes that the 

perimeter of the toroidal cross section remains 

constant, while the circumference in the C-direc- 

tion is compressed by the indentation in the foot- 
print region. 

As a consequence of this assumption, the 

boundary values of the velocity components are 

w=g2a ; w ' = 0  (2) 

3r= \ ~ Or~ \ . 8 0 \  .~ 8 0 \  

(3a,b) 

where s is the arclength in the &direction. A 

more convenient form of  these expres- 

sions can be found by using 

ar 

and 

~)== asia)C5_ 
&/ao)+ 

These give 

(4) 

(5) 

; v  = - S2 .= & / 0 0 ) +  

(6a,b) 

If the arc length and surface-radius variations are 

given explicitly, these relations can be used direct- 
ly. 

3. Poiseuille-Flow Solutions 

The appropriate equations in the thin-tire limit 

are found by letting the cross-sectional radius r 

be small in comparison to the wheel radius R. 

Then ~--~ R, and the equations of  motion reduce 

to those in cylindrical coordinates r,O and z, 

where z - - R ( r  is the distance along the 

cylindrical axis, measured from the center of the 

footprint region. Because the flows to be consid- 

ered will not in genera[ be axisymmetric, it is 

useful to write these equations in cartesian coordi-  

nates: 

3Vx &,y + _ ~ z = 0  & §  ~. (7) 

v=~v~ + v ~ + w a v  . . . . .  L aJ_+ 
3z p 3x vV2Vx (8a) 

av , 3vy , 3Vy 1 31)" Ux~t Vy-~--t- ZO-~ - =  - -7"  ay q-/~V2UY (8b) 

au, , ~ y  ~w 1 3p' + ~,V2w (8c) v x ~ -  • v~ + w 3z p & 

where Vx and vy denote the velocity components 

in the x and y-direct ions respectively. Here z lies 
along the axis of the channel, while x and y lie in 

the cross-sectional plane. 

Consider now a pipe whose undeformed cross- 
sectional scale is a, and has a deformed region of  

length 2L and max imum deflect ion 8m,• 

Fig. 1). The velocity of  the wall in the z-direction 
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is called (.. Define dimensionless  var iables  by 

~, = x/a ,  ~ l -  ;'/a, ~ - -  z / L .  p =  1~c am~ p 
(l o 

~ L /, , , , , -  eT". "- v 

In terms of  these variables the Navier-Stokes 

equat ions become 

at.." 3 V  a 314" 0 
0~ -F-3~r/ . L - ) ~ "  = (9) 

. a ~ - +  V 0~-) (lOa) 

a 2 

&,~__a_( ..OV. VaV) R e  L [ . \ u ~  : ~ - /  (rOb) 

" OP a ~21,, 

9~--/ (~Oc) 

a . 8 . . . . . . . . .  \ S W '  ~P  v72W' 
~- R e  L (1 . . . .  L -  ~4 )- aft . . . . .  3r - -  "" 

where 

~., a .2 o v ( a ~'~ a ~ ca  
V ' ~ - ~ r - t  av.~ ~- - -  Rc'=- 

L / 8~ "=' > 

The eoiseui l le- f low limit is now found by tak- 

ing Re  +0, a /L - ,O:  the dependent  variables are 

expanded as 

H .... W o t  ]-]H.'{ ~:~5 . ( l lb) 

a ( a ) '  ( , ,c) 
?' : L L_r, +-(?:) 1, 

,, ( ; : ) '  V =  F]"q" :~3 - (lld) 

The equat ions  to be solved for the zeroth and first 

orders  are 

-a~" = 7 , ~ ' &  v w;  (~2) 

a~/2 ~_ at,q _ aw'o_ (~3) 
a e az/ a~ 

at'~ ap~ 

1.5 
.A./a 

1.0 

0.G 

0.0 
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G/,, 

Fig. 3 Relations of major and minor axis 

- - I,V', (14 )  

The leading term is the Poiseuil le-flow approxi-  

mation,  in which the axial pressure gradient  is 

balanced by the transverse shear gradient.  The 

solut ion for the case of axisymmetric  flow (purely 

radia l  deformat ion)  is given in Rae (1983) That  

geometry is not very realistic, since the perimeter 

of  the deformed cross-section is not constant.  In 

what flows, the Poiseuil le-f low solut ion is given 

for a geometry that changes from a circle to an 

ell ipse of equal  perimeter.  As shown in Fig. 2. the 

specific shape used for the case below' is gix, en by 

a ~ - -  ~2-'a ~ [ l  + cos{6(ck-  z)}] 

5~r 76~: 

3 = 0  else where (15) 

with &~ax/a=0,4. This  is the same geometry as 

used in the calculat ions  o f T a u l b e e  et al. (1984). 

The semi-minor  axis of  the ellipse is given by 

a 2 a 

and the semi-n~ajor axis tbHows from the require- 

ment of  constant  perimeter,  which reduce to 

A _ re/2 ( B ~ ~1.= 
a -u 1 -  TI (17) 

where E is the el l ipt ic  integral of the second kind 

{Abramowi tz  and Stegun, 1970): 

F (  k,q)) 
. / o  
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The variations of A and B with 3 are shown in 

Fig. 3. 

3.1 Z e r o t h - o r d e r  s o l u t i o n  

The solution of Eq. (12) is found by using 

coordinates in the cross-sectional plane which 

have their origin at the center of ellipse: 

1 3  

e - -  ~___. # (19a,b) 

c';/ 

The torus surface is then given by e2+  #~=1, 

and the equation to be solved is 

aPo F l a y  a ~ { a ' f  a ~ l a~- =LkA) -?-~-§ ~ J  wo (20) 

The solution of this equation is the same as that 

of Wild et al. (1977): 

W;(r~ ,~ ,~ ' )=  dPo \ a i \ a l x 

( 1 - ~ ' 2  02) (21) 

In Wild et al.(1977) the pressure was pre- 

assigned, and this solution was then used to find 

the resulting mass flow. In the present case, the 

pressure will vary with ~" in such a way as to keep 

the mass flow constant at each r ; this is possible 

only for one value of the total mass flow. Its 

determination is as follows. The incremental mass 

flow due to Wo is 

(Ay( 7 
z dPo \ a - I  \ Y I  

Ia W ~  4 d~ [(a)~A-Z+(a)]B~2 (22) 

or, in dimensional form 
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Fig. 5 Poiseuille flow solution for the 
pressure(zerot horder). 

(_A_7(_B:/2 

k \ a /  \a/J 

(23) 

The total mass flow is this amount plus the 

amount transported by the solid-body rotation: 

�9 ( a T ( - ' - :  

Neither of the terms on the right-hand side of this 

equation is constant; only their sum is required to 

equal the total flow rate. 

This expression can be solved for the pressure 

gradient: 

71 
dPo _. 42~ ( ~ n - s r p A B c )  L\ a I \ c~, / J 

\ a / \ a /  

The periodicity condition on the pressure 

S:_~zz dZ=O (26) 

-then gives the unique value of the mass flow: 

rn \ a / \ a / (27) 
- A 2 B 2 

\ ~ i  \-h-: 

Here : is half the total length of the pipe (equal 
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Fig. 6 Comparison of the axial pressure distributions 
between the result of Taulbee et al. and the 
present analysis for Re-10. 

to half the circumference of the thin tire being 

studied). For  the case of a circular cross sec- 

t i o n ( A = B ) ,  these formulas reduce to those of  

Rae (1983). 

Figures 4 and 5 show numerical results for the 

specific deformation described above, applied to a 

radius ratio of 1/3 to facilitate comparison with 

the numerical results of Taulbee et al. (1984). In 

Fig. 6, the comparison of the only distributions of 

the average axial pressure between the numerical 

result of Taulbee et al. and the present analysis 

has shown for R e = 1 0 .  Both axial pressure pro- 

files show a similar trend. Such a large curvature 

parameter, however, clearly violates the thin-tire 

approximation, and this accounts for some of  the 

difference between the analytic and numerical 

results. 

3.2 First-order solution 

where the coefficients are: 

The solution for the first-order (in alL)  pres- 

sure and axial velocity component can be found 

as follows: the left-hand side of the last of Eq. 

(14) is (with ~=~ ' ) :  

aw~ aWo + a ~  awo) ),,e 
+aj_~ aWo~ 

d~ Po 
- d~2 G ( ~ ) ( 1 -  U -  ~2) 

dPo dG ~2__ 2 - 3~  

~ - G ( ~ )  + 2 ~' 33--~-~ ),,v ~~ 
= F ~ ( g ) ( 1 - # a - O  2) 

+ F 2 ( g ) { [ 1 - O ] + F a ( g ) #  2 

where 

(28) 

~ 2 9 2  / T _ A ,  g _ _ _ B  (29) 
G(~') = 2(fi.2+ g2) ; a a 

and where 

F1 = - G P o ' -  G'P'o = - (GPg)' 

F2 = 2 P o G -~ 

Fa = - 2PoG (30a,b,c) 

A solution of  Eq. (14) satisfying the boundary 

conditions at the surface is 

w ~ = ( 1 -  77 2 -  ~)(Co(~) + c,(~) 

+cz (~ )  82+ dz(~') ~ ez) (31/ 

-- R e F 2 ~  ~ 2 
c ' = ~ ( ( ~ +  3~ )  

2 A 2 g 4 R e ( F ~  - F3) - ( 1 2 g  2 + 2A2) .A2B2Re(F~ + F2) 
c~- 4 ~ g ~ _  (12~ + 2 ~ ) ( 1 2 ~  + 2 H~) 

d2-- A Z g 2 R e ( F ~  + F2) -- c2(2/32 + 12_A-_ z) 
2B 2 

2/~2& + 2~2c2 + ~2g2(  dP1 d~ R e F l )  
C o  - 2(~2 + g2) 

Determination of the coefficient Co cannot be 

done until the pressure gradient dP~/d~ is found; 

this quantity, in turn, is set by the condition that 

the increment in mass flow corresponding to the 

first-order solution be constant, and of such a 

magnitude as to make the first-order pressure 
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periodic. The total mass flow is 

m = rcaZABpc ' 3max 2 ~" ~" // 7/" . . . .  * T a  ~ o c t , - T r o t .  

+ ~ f  W'ldOd~ ) (32) 

The integral can be evaluated as 

f W;d~d~ = ~Co +-~( c2 + dz) (33) 

Thus the first-order increment in mass flow is 

�9 a~max 2 ~-~l- Co , 1 , , d 2 ) l  J A m = ~L-z-~ra pc~t~ [~-  • c2 • 

a C~max 2 . ; -  
~= L2 -zca pc ~ gel (34) 

Solving this for the pressure gradient one finds 

4(A-~ + / j2 )  
dP~ _ ReF1 + /x M 
d~ (AB)~ 

( c~ + d~)( ~ ~ + g~) 

- 2"t~z&+2z4-2cz (35) 
( X g )  ~ 

Then the periodicity requirement: 

~IL dP1 _ f _ ~ - d g  0 (36) I 

will be satisfied if A rn has the value: 

K 

where 

f,IL Gd~ K--  - R e  -~/L 

+~"L ( c ~ + d 2 ) ( X ~ + B  ~) 
J-,~ 2 (Xg)~  d~" 

0 . 4 0  - 

E 
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Fig .  7 P res su re  d i s t r i b u t i o n s .  

+2~ ~ B2d~+A2c2 ,r 
J-,,L ( / i g ) 2  -~.~ (38) 

The geometry used in the present study is sym- 
metric about ~b=zr, and so the quantities F1,c2 
and d2 are odd functions of ~'. Thus the value of 
A M in the present case is zero. 

Figure 7 shows the zeroth and first-order pres- 
sure for the case 

a _ 1 8max =0.4, ~g-=6, R e = 1 0  
R 3 '  a L 

and for the deformation given in Eq. (15). As in 
other studies (Wild et al., 1977), the peak presure 
gradient is shifted upstream for non-zero 
Reynolds number. 

3.3 S e c o n d a r y  f l ow  

The flow in the planes ~'=constant is given by 
the velocity components U1 and VI, and is refer- 
enced to here as the secondary flow. According to 
the first of Eq. (14), it is not affected by pressure 
gradients in this plane, but is driven by the wall 
motions. In order to take these into account, it is 
necessary to introduce the explicit wall geometry 
being used. Moreover, because the equations for 
the surface geometry of the circle-to-ellipse shape 
are all implicit, it is convenient to consider only 
the case of small deformations, i.e., 3/a<<1. For 
this limit, the major /minor  axis ratio is close to 
1., and it is possible to derive the following 
explicit formulas, after some algebra: 

--B--: 1 - l ~ - ( e x a c t )  
a 

k 2 
E(k, 0) = 0 - ~ - [  0 - sin 0cos 0] 

+ O ( k  4) (39a) 
z 6 ~ 2 k = 2 a + @ ( a  ) (39b) 

8 3 2 B - = I -  ~-  + ( ) ( ~ - )  (39c) 

1 6 3 2 
A~=la §  + (~)(a - ) (396) 

The formulas of  cross-sectional shape of the 
deformed torus are: 

xs �9 s c~ . ~ s  c~ ~ a - = S l n - a - - + ~ S a  in a -  + (--)(-a-) (40a) 



74 Youn J. Kim 

y~ s 3 " " 8 )z 
a : - c ~ 1 7 6  ] ( ' ) ( a  (40b) 

rs c~ [ . . . , s  ,~2s s ] 
-a----1 t 2i~Ls,n 7-co-~  Z - c o s  a 

+,~-3 .... (e3) 2 (40c) 

- t - ~ m  ~- cos { (40d) 0 =  a - a  k a a 

Thus the velocities of the surface are: 

-~/-i,,=- ar <?(~7a5 ),,- 
= ~ h ' r  sm a -  c~ cos 

f - (  8 ) [  (41) !'- .... i-.;J 

80 ~ _ , - ,  . 80 ~ t~ d8 80 ) 

-'(2d~5 { ~ sin ;-(1 ~-c~ ) +(--')( c~ )} (42) 

Similarly, the rectangular components are 

.-,dS f 1 �9 as vx = ~x~-l~-~ln' a ! ( ) ( ~ ) }  (43, 

(t3 l __1_[1 ~_ cos3 :s ]_} ( ) (  8a)} (44 , 
vY=d2 dC t Z L a J - \  

The exact paths traced by points at given values 
of s/a are shown in Fig. 2 �9 the initial shapes of 
these trajectories correspond to these approximate 
formulas for the velocity field. The ['act that the 
trajectories have very little curvature suggests that 
the approximate formulas are accurate over a 
significant range of d/a. 

To the accuracy retained, the secondary veloc- 
ities at the wall can be written as 

I ~ 3 { , [ ) ( 3 )  (45) 
(7~ - g - ( ~ ' )  2 a 

"q = g(~') { -  2i--~-(1 + r/:')} F C.')( ~ ) (46) 

where 

g(~)  .(2L d(8/Sm.~• (47) 
c' de 

__ -f)- ~- _d_(. ~ / &.~ ) 
c d~ 

and where ~ and z/ can be replaced by e and 
with no change in the order of the approximation. 

Subject Io these boundary conditions, the equa- 
tions to be solved are 

c?U, t c?I/l= 3Wo (48) 
88  8~ F,~" 

and a second equation, found by eliminating the 
pressure from the two secondary-flow momentum 
equations (and then applying the a i r  *0 limit): 

87 88 ~ ~ 8z]2] U,= 88 8~ 2 8r]~- ) 1/1(49) 

An approximate solution of this problem was 
sought as follows: first, the continuity equation is 
written in the form: 

A 8 ~  1t 8~  

- (F, - / ';A UJ (50) 

A trial solution of this equation, of the form: 

, ~ - : ~ g k ~ ) e ' + A ( 1 -  e'2)e, 8 (51) 

I.~-- - l g ( ~ ) ( 1  : 83) r B ( 1 -  8 -~- 82) 

( / ;+ / ,  ,~) (52) 
satisfies the boundary conditions, and would 

satisfy the differential equation if values of el,fo 
and f: could be found such that 

3 ,_g_, 1 ~ 
e, = 4  :"f *-.)-l'~_ 

I 
Z, ~ 2k~ 

01 .............. o.o-  

--4.0 . , i  . . . . .  i . . . . .  , ol ' .... + 
0 . 0 -  

�9 4 . 0  ~ . . . . .  ~ . . . . . . . . . .  ~ . . . . .  f . . . . .  

�9 . 0 . 0 0 2 /  . , . . . . .  , . . . .  , . . . . . . . . . . . . .  

0 80 120 180 240 300 360 
z<lJreo1~n(deg] 

Fig. 8 Variations of parametiers along the z- 
direction. 
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1 
/~ = F, - - ~  F:, 

4 A  

:_--- 3 K___! b~ 
4 / ~  2 

In the above equations, both /"z and F:~ depend 

only on 6/a. The variations of e~,fo and f~ along 

the z-direction are shown in Fig. 8. 

4. Conclusions  

The full problem of flowfield inside a rolling 

tire is very complex, and requires solution of the 

equations of steady motion in a deformed torus, 

with a moving-wall boundary condition and with 

a pressure distribution and mass flow that must 

be found as part of the solution. These degrees of 

complexity distinguish this problem from other 

cases of flow in curved passages, such as the Dean 

problem, where a smaller number of independent 

parameters is sufficient to define the flow. The 

present problem is characterized by three parame- 

ters: the radius ratio, the Reynolds number, and 

the tire deflection, as well as the entire surface 

geometry. 

For small values of these parameters, analytic 

solutions are possible, and one such limiting 

solution is given in this study. Further studies are 

required, in order to shed light on the influence of 

non-zero Reynolds number and curvature. These 

further studies will also improve understanding of 

the secondary-flow patterns, radial migration of 

axial velocity profiles, and other features includ- 

ing temperature distributions that have been ob- 

served in numerical solutions of the full equations 

of motion. 

References  

Abramowitz, M. and Stegun, I. A., 1970, 

"'Handbook of Mathematical Functions: with 

Formulas, Graphs, and Mathematical Tables," 

9th ed., Dover, New York. 

Chandran, K. B., Yearwood, T. L. and Wiet- 

ing, D. W., 1979, "'An Experimental Study of 

Pulsatile Flow in a Curved Tube." J. Biome- 
ehanics, Vol. 12, pp. 793--805. 

Dean, W. R., 1927, "Note on the 

Motion of Fluid in a Curved Pipe," Phil. Mag. 
(7) 4, pp. 208--233. 

Dean, W. R., 1928, "'The Streamline Motion of 

Fluid in a Curved Pipe," Phil. Mag. (7) 5, pp. 

673-695.  

Hill, D. E. and Baumgarten, J. R., 1984, 

"Experimental Stress Analysis of a Thin Walled 

Pressurized Torus Loaded by Contact with a 

Plane," AIAA J., Vol. 22, pp. 124--127. 

Koutny, F., 1976, "'A Method for Computing 

the Radial Deformation Characteristics of Belted 

Tires," Tire Science and Technology, Vol. 4, pp. 

190--212. 

Lin, J. Y. and Tarbell, J. M., 1980, "An Experi- 

mental and Numerical Study of Periodic Flow in 

a Curved Tube," J. Fluid Mech., Vol. 100, pp. 

623--638. 

Mullin, T. and Greated, C. A., 1980, "'Oscil- 

latory Flow in Curved Pipes. Part 1. The 

Developing-Flow Case,'" J. Fluid Mech., Vol. 98, 

pp. 383--395. 

Rae, W. J., 1983, "'Flow Inside a Pneumatic 

Tire: A Peristaltic-Pumping Analysis for the 

Thin-Tire Limit at Very Low Forward Speed," J. 

of  Applied Mechanics, Vol. 105, pp. 255--258. 

Stewartson, K., Cebeci, T. and Chang, K. C., 

1980, "'A Boundary-Layer Collision in a Curved 

Duct," Q. J. Mech. Appl. Math., Vol. 33, pp. 59 

-75 .  

Talbot, L. and Wong, S. J., 1982, "'A Note on 

Boundary-Layer Collision in a Curved Pipe," J. 

Fluid Mech., Vol. 122, pp. 505-510.  

Taulbee, D. B., Wey, M. J. and Rae, W. J., 

1984, "'Calculation of Flow Inside a Loaded 

Rotating Tire," the 37th Annual Meeting, Amer- 
ican Physical Soeieo', Division of  Fluid 
Dynamics, Providence, RI. 

Wild, R., Pedley, T. J. and Riley, D. S., 1977, 

"'Viscous Flow in Collapsible Tubes of Slowly 

Varying Elliptical Cross Section," ,I. Fluid 
Mech., Vol. 81, pp. 273--294. 

Yao, L. S. and Berger, S. A., 1975, "Entry Flow 

in a Curved Pipe," J. Fluid Mech., Vol. 67, pp. 

177-- 196. 



76 Youn J. Kirn 

Appendix 

Continuity: 

8u , u , 1 8v , u c o s O - v s i n O  
8r  ~ T t T g 8  + a 

1 8w'  
q = 0  a 8~ 

r-direct ion momentum: 

u aUq u 8u v = + ( ~ +  ) 
ar  r 80 r a~ 

- 2~w ' cos  0 w'acos O 1 8p' 

f l 32v , 1 8v 1 8au 
- U ~ r ~ * T z  80 r ~ 80 "~ 

s i n O [ S v q  v 1 8u ] 
n kar 7 r ~0 

1 aaw ' 1 ra=u ~ 8 w ' ] )  
~ arar ~ = [ ~ - c ~  

&direction momentum: 

u 8 7 - •  r 

w%inO _ 1 8p" 
l *  �9 + 2 ~ t  slnO-} - -  

o r  80 

[ S Z v ,  1 8v 1 8Zu v 
~ - 8 7  n r 8r  r 808r  r 2 

1 8u , c o s O f S v  , v 1 3 u j  
7 ~ t ~ k ~  ~ 7 r 80 

1 8 v �9 3w 1 8~w' + - 7  + s l n O ~ -  
~r 808~ 

z-direction momentum: 

  +5 + O(uco O-v inO) 
W' ~W' W' 

+ (a2 + ~ - ) ~ - +  ~ - ( u c o s  0 - vsinO) 

_ 1 8 p ' +  (82w ' + 1  8w' , 1 82w" 
oo 8~ u ] . W r -  r - g 7  - ~  r ~ aO ~ 

1 /  8au ~ Ow" , sinO 8w" 
7 ~ , T ~ - - c ~  7 aO 
1 8u , 1 82v \ 

w -cos  v ~ - t  s m L , ~ ]  I 


